Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Occup Environ Med ; 64(1): 58-63, 2022 01 01.
Article in English | MEDLINE | ID: covidwho-1931932

ABSTRACT

OBJECTIVES: Before community transmission of COVID-19 was recognized in the United States, cruise ship passengers with high risk for exposure to SARS-CoV-2 were repatriated and quarantined. We describe cases of influenza-like illness (ILI) among responders. METHODS: We reviewed situation reports and responder illness reports to characterize ill responders, including illness onset date, symptoms, fever, diagnostic tests, potential breaches in PPE use, and return to work status. RESULTS: Among 339 responders, nine (3%) reported ILI. No breaches in PPE were reported. Three responders with ILI were tested for both SARS-CoV-2 infection and influenza A; none tested positive for SARS-CoV-2 infection and two tested positive for influenza A. CONCLUSIONS: Despite an outbreak of ILI among responders, none were diagnosed with COVID-19, suggesting preventive measures in place might have been sufficient to prevent responders from SARS-CoV-2 exposure.


Subject(s)
COVID-19 , Influenza, Human , Diagnostic Tests, Routine , Humans , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Quarantine , SARS-CoV-2 , Ships , United States/epidemiology
2.
BMJ Glob Health ; 6(5)2021 05.
Article in English | MEDLINE | ID: covidwho-1219372

ABSTRACT

The Hopi Tribe is a sovereign nation home to ~7500 Hopi persons living primarily in 12 remote villages. The Hopi Tribe, like many other American Indian nations, has been disproportionately affected by COVID-19. On 18 May 2020, a team from the US Centers for Disease Control and Prevention (CDC) was deployed on the request of the tribe in response to increases in COVID-19 cases. Collaborating with Hopi Health Care Center (the reservation's federally run Indian Health Service health facility) and CDC, the Hopi strengthened public health systems and response capacity from May to August including: (1) implementing routine COVID-19 surveillance reporting; (2) establishing the Hopi Incident Management Authority for rapid coordination and implementation of response activities across partners; (3) implementing a community surveillance programme to facilitate early case detection and educate communities on COVID-19 prevention; and (4) applying innovative communication strategies to encourage mask wearing, hand hygiene and physical distancing. These efforts, as well as community adherence to mitigation measures, helped to drive down cases in August. As cases increased in September-November, the improved capacity gained during the first wave of the pandemic enabled the Hopi leadership to have real-time awareness of the changing epidemiological landscape. This prompted rapid response coordination, swift scale up of health communications and redeployment of the community surveillance programme. The Hopi experience in strengthening their public health systems to better confront COVID-19 may be informative to other indigenous peoples as they also respond to COVID-19 within the context of disproportionate burden.


Subject(s)
COVID-19 , Indians, North American , Pandemics , Public Health Surveillance , COVID-19/ethnology , COVID-19/prevention & control , Centers for Disease Control and Prevention, U.S. , Humans , Indians, North American/statistics & numerical data , Pandemics/prevention & control , United States/epidemiology
4.
MMWR Morb Mortal Wkly Rep ; 69(44): 1654-1659, 2020 Nov 06.
Article in English | MEDLINE | ID: covidwho-914859

ABSTRACT

On June 3, 2020, a woman aged 73 years (patient A) with symptoms consistent with coronavirus disease 2019 (COVID-19) (1) was evaluated at the emergency department of the Hopi Health Care Center (HHCC, an Indian Health Services facility) and received a positive test result for SARS-CoV-2, the virus that causes COVID-19. The patient's symptoms commenced on May 27, and a sibling (patient B) of the patient experienced symptom onset the following day. On May 23, both patients had driven together and spent time in a retail store in Flagstaff, Arizona. Because of their similar exposures, symptom onset dates, and overlapping close contacts, these patients are referred to as co-index patients. The co-index patients had a total of 58 primary (i.e., direct) and secondary contacts (i.e., contacts of a primary contact); among these, 27 (47%) received positive SARS-CoV-2 test results. Four (15%) of the 27 contacts who became ill were household members of co-index patient B, 14 (52%) had attended family gatherings, one was a child who might have transmitted SARS-CoV-2 to six contacts, and eight (30%) were community members. Findings from the outbreak investigation prompted the HHCC and Hopi Tribe leadership to strengthen community education through community health representatives, public health nurses, and radio campaigns. In communities with similar extended family interaction, emphasizing safe ways to stay in touch, along with wearing a mask, frequent hand washing, and physical distancing might help limit the spread of disease.


Subject(s)
Coronavirus Infections/ethnology , Coronavirus Infections/prevention & control , Disease Outbreaks , Indians, North American/statistics & numerical data , Pandemics/prevention & control , Pneumonia, Viral/ethnology , Pneumonia, Viral/prevention & control , Adolescent , Adult , Aged , Arizona/epidemiology , Betacoronavirus/isolation & purification , COVID-19 , COVID-19 Testing , Child , Child, Preschool , Clinical Laboratory Techniques , Contact Tracing , Coronavirus Infections/diagnosis , Coronavirus Infections/transmission , Female , Humans , Infant , Laboratories , Male , Middle Aged , Pneumonia, Viral/transmission , SARS-CoV-2 , Young Adult
5.
Disaster Med Public Health Prep ; 16(3): 1279-1281, 2022 06.
Article in English | MEDLINE | ID: covidwho-910326

ABSTRACT

The need for increased testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes coronavirus disease 2019 (COVID-19), has resulted in an increase of testing facilities outside of traditional clinical settings and sample handling by individuals without appropriate biohazard and biocontainment training. During the repatriation and quarantine of passengers from the Grand Princess cruise ship at a US military base, biocontainment of a potentially infectious sample from a passenger was compromised. This study describes the steps taken to contain the spill, decontaminate the area, and discusses the needs for adequate training in a biohazard response.


Subject(s)
COVID-19 , Quarantine , Humans , Quarantine/methods , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2 , Hazardous Substances , Disease Outbreaks/prevention & control , Ships
SELECTION OF CITATIONS
SEARCH DETAIL